The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Accelerated Optimization for Machine Learning: First-Order Algorithms

Accelerated Optimization for Machine Learning: First-Order Algorithms

Current price: $169.99
CartBuy Online
Accelerated Optimization for Machine Learning: First-Order Algorithms

Barnes and Noble

Accelerated Optimization for Machine Learning: First-Order Algorithms

Current price: $169.99
Loading Inventory...

Size: OS

CartBuy Online
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.
Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and shastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.
Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and shastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

More About Barnes and Noble at The Summit

With an excellent depth of book selection, competitive discounting of bestsellers, and comfortable settings, Barnes & Noble is an excellent place to browse for your next book.

Find Barnes and Noble at The Summit in Birmingham, AL

Visit Barnes and Noble at The Summit in Birmingham, AL
Powered by Adeptmind