The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach

Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach

Current price: $49.99
CartBuy Online
Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach

Barnes and Noble

Latent Factor Analysis for High-dimensional and Sparse Matrices: A particle swarm optimization-based approach

Current price: $49.99
Loading Inventory...

Size: Paperback

CartBuy Online
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Barnes and Noble
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.
This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications.
The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.
This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications.
The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.

More About Barnes and Noble at The Summit

With an excellent depth of book selection, competitive discounting of bestsellers, and comfortable settings, Barnes & Noble is an excellent place to browse for your next book.

Find Barnes and Noble at The Summit in Birmingham, AL

Visit Barnes and Noble at The Summit in Birmingham, AL
Powered by Adeptmind